
DEEP REINFORCEMENT LEARNING FOR REACTIVE IOS SPACE MANIPULATOR
OPERATIONS

Matteo D’Ambrosio1, Lorenzo Capra2, and Michèle Lavagna3

1Politecnico di Milano, Italy, matteo1.dambrosio@mail.polimi.it
2Politecnico di Milano, Italy, lorenzo.capra@polimi.it

3Politecnico di Milano, Italy, michelle.lavagna@polimi.it

ABSTRACT

The application of space robotic manipulators and height-
ened autonomy for In-Orbit Servicing (IOS) represents a
paramount pursuit for leading space agencies, given the
substantial threat posed by space debris to operational
satellites and forthcoming space endeavours. This work
presents a guidance algorithm based on Deep Reinforce-
ment Learning (DRL) to solve for the space manipulator
path-planning during the motion synchronization phase
with the mission target. The goal is the trajectory genera-
tion and control of a spacecraft equipped with a 7-Degree
of Freedom (DoF) robotic manipulator, such that its end
effector is stationary with respect to the target point of
capture. Proximal Policy Optimization (PPO) is selected
as designated DRL algorithm. The PPO algorithm gener-
ates the desired joints rates of the robotic arm, which are
then integrated and passed to the controller, that is model-
based feedback linearization. The agent is first trained
to optimize its guidance policy generator and then tested
extensively to validate the results against a simulated en-
vironment representing the motion synchronization sce-
nario of a IOS mission.

Key words: Space manipulator; Deep Reinforcement
Learning; In Orbit Servicing; Motion synchronization.

1. INTRODUCTION

The recent surging interest in advancing technologies and
methodologies for In-Orbit Servicing (IOS) of satellites
and space systems is motivated by the continuous expan-
sion of space exploration and utilization, demanding for
efficient and dependable approaches to repair, refuel, and
reposition space assets. Spaceborne robotic systems are
a key technology potentially unlocking the capability to
perform these tasks, and their accurate handling and con-
trol is an essential aspect of IOS missions. The afore-
mentioned activities are carried out either on a coopera-
tive or an uncooperative target, and it is the latter scenario
that is driving the current research field. The inherent un-
certainties associated with interacting with an uncooper-

ative target necessitate a high degree of motion control
autonomy, reactivity and adaptability to the surrounding
environment. The rapid progress in the field of artifi-
cial intelligence is promising substantial enhancements
in the capabilities of autonomous Guidance, Navigation,
and Control (GNC) within these systems. Reinforce-
ment Learning (RL), above all, seems like a promising
tool to solve complex decision making problems, formu-
lated as Markov Decision Processes (MDP). The fusion
of Neural Networks’ generalization abilities with Rein-
forcement Learning methods has given rise to Deep Re-
inforcement Learning (DRL), which is extensively em-
ployed in solving planning problems for its capacity to
handle high dimensional state and action spaces, as well
as the possibility to cope with partially observable MDPs
(POMDP).
DRL has been recently adopted to generate the trajectory
to fly around a target object for its autonomous shape re-
construction in [1] and [2]. Other space applications of
this methodologies were investigated by Gaudet et al.:
adaptive guidance and control for endoatmospheric mis-
siles is enhanced through meta-reinforcement learning in
[4]; 6-Degree of Freedom (DoF) planetary landing with
DRL is studied in [5]; asteroid close proximity guidance
in [6].
Regarding the application of this technique to space
robots, present literature is still quite scarce. In [8] a mo-
tion planning strategy for a 7-DoF space manipulator is
implemented, and some of the concepts detailed in that
work are also applied here. Multi-target trajectory plan-
ning is presented in [16], while control of a free-floating
space robot is tackled in [18]. In the broader field of
robotics, RL is being widely investigated [14], specifi-
cally for the autonomous guidance and control of robotic
systems.
The aim of this work is to take a step forward the ap-
plication of DRL for the trajectory planning of a space
manipulator in a challenging and dynamical environment
as the one of IOS missions. The results obtained demon-
strate the enhanced autonomy and reactivity provided by
the application of DRL in the context of the motion syn-
chronization phase of an hypothetical IOS mission, and
prove that the proposed method has the potential to be
extended to a wider set of scenarios.

2. PROBLEM STATEMENT

The case study that is being analysed is now better de-
fined. In robotic IOS missions, a key phase involves
motion synchronization. The main operations performed
during a robotic IOS mission are reported in a block di-
agram in Fig.1. During this phase, the chaser spacecraft

Figure 1. Mission phases.

fine-tunes its relative position and angular orientation un-
til its end effector remains stationary relative to the target
capture point. Achieving the correct relative state at the
end of this closing phase is critical for the subsequent
tasks of grasping and making contact. Figure 2 illustrates
the problem at hand. The end effector of the space ma-

Figure 2. Motion synchronization scenario.

nipulator shall effectively track a specified grasping point
on the tumbling target and follow its motion, in prepa-
ration to the subsequent activities. A generic shape for
the target is selected, without loss of generality, and it is
designed as a cylinder with two appendages representing
solar panels. The chaser instead, is a 6-DoF spacecraft
equipped with a 7-DoF redundant manipulator.
The DRL agent, that is PPO, performs the guidance and
control tasks, receiving the input data from the naviga-
tion block. The work operates under the assumption of
having prior knowledge of the state variables describing
the scenario at every time instant, and omits the inclu-
sion of a physical navigation block responsible for esti-
mating these state parameters, since it is outside of the
scope of this study. Consequently, the state variables are

presumed to be available and are directly input into the
guidance and control blocks. These blocks then gener-
ate control actions, which are subsequently applied to the
system. The system, in turn, integrates the equations of
motion for both the chaser and the target and provides the
scenario for the next simulation step, effectively closing
the feedback loop.

2.1. Space manipulator dynamics

This section provides a concise introduction to the equa-
tions of motion for a space manipulator with N degrees-
of-freedom. It’s important to note that, in the scope of
this study, the multi-body system is described as free-
flying, signifying that the spacecraft is actively controlled
in both translation and rotation, in contrast to the free-
floating scenario [10]. By employing the direct path ap-
proach, the spacecraft’s center of mass is utilized as the
representative point for translational motion, enabling the
derivation of the system’s kinematics and dynamics. This
approach results in more streamlined equations. Using
a Newton-Euler formulation, the equations of motion of
the space manipulator system are computed, and they are
reported in Eq. 1.

H(q)q̈ +C(q, q̇)q̇ = τ (1)

H ∈ R(6+N)×(6+N) is the symmetric, positive -definite
Generalized Inertia Matrix (GIM), C ∈ R(6+N)×(6+N)

is the Convective Inertia Matrix (CIM), containing the
nonlinear contributions, the Coriolis and centrifugal
forces, and τ ∈ R(6+N) is the vector of generalized
forces in the joint space. The parameter q entails the
selected generalized variables, which compose the space
manipulator state and are reported in Eq. 2:

q = [r0,R0, qm]⊤ = [q0, qm]⊤ (2)

where r0 is the position vector of the base spacecraft in
inertial frame, R0 is the orientation of the base spacecraft
with respect to the inertial frame, employing a quaternion
representation, and qm contains the joint angles of the
robotic arm.
The kinematic and dynamic properties of the system are
determined using the MATLAB library SPART (SPAce
Robotic Toolkit) [11], a software package designed for
modeling and controlling mobile-base robotic multi-body
systems with efficient and recursive algorithms, taking
advantage of the kinematic tree topology of the sys-
tem. Additionally, for solving the equations of motion,
a model of the space manipulator is constructed using the
Simulink Simscape Multibody library.

2.2. Target dynamics

As the target is positioned at the origin of the LVLH ref-
erence frame, its translational motion can be disregarded,
focusing instead on the rotational dynamics, which is

modeled using Euler equations in orthogonal principal
axes of inertia coordinates, as in Eq. 3.

Iω̇ + ω × (Iω) = M (3)

I is the target inertia matrix, ω the angular velocity vec-
tor, and M is the vector of applied torques.
Once again, the equations of motion of the target are
solved through a Simulink Simscape Multibody model of
the target.

3. REINFORCEMENT LEARNING GUIDANCE

RL is a widely utilized tool for tackling MDPs. When
combined with Neural Networks for function approxima-
tion, it becomes a potent method for addressing complex
problems characterized by high-dimensionality and par-
tial observability [15]. A cutting-edge DRL algorithm
designed for problems with continuous state and action
spaces, that is PPO [13], is investigated for the robotic
manipulator’s guidance optimization.

3.1. Proximal Policy Optimization

PPO is a state-of-the-art on-policy, model-free DRL algo-
rithm belonging to the family of policy-gradient methods.
With respect to its predecessor Trust Region Policy Op-
timization (TRPO) [12], PPO provides a simper imple-
mentation with higher sample efficiency, which makes for
faster training without compromising reliability. As for
its performance on complex, high-dimensional, and par-
tially observable continuous control problems, PPO out-
performs many of its competitors in various benchmarks
and provides high training stability. PPO is based on the
Actor-Critic framework [9], where the actor represents
the decision-making logic of the agent (i.e. the policy π),
and the critic evaluates the actions of the actor in the envi-
ronment. Both actor and critic are approximated through
Deep Neural Networks (DNNs) parametrized through
variables θ, which are updated throughout the training
process. The Actor-Critic approach is briefly described:

1. An agent is initially situated at a state s, and per-
ceives its environment through observations o.

2. Based on o, the actor autonomously decides the ac-
tion a to take, and applies it in the environment to
move to a new state s′.

3. Depending on the definition of the reward
R(ak, sk), the critic evaluates the action that
has been taken, and guides the parameter updates of
the actor through stochastic gradient descent on a
loss function.

The optimal policy in an infinite-horizon problem is
found through Equation 4, and provides the agent with
the maximum reward when applied in the environment.

π∗ = argmax
π

Eπ

[∞∑
k=0

γkR(ak, sk)

]
(4)

where the discount factor γ ∈ [0, 1] introduces a decay of
rewards obtained distantly in time, and measures whether
the agent seeks short-term or cumulative rewards.

Compared to the loss function in TRPO, PPO’s clipped
surrogate objective (Eqs. 5 and 6) has the advantage of
limiting the policy’s parameter updates by clipping the
loss function, providing increased training stability.

pk(θ) =
πθ(ak|sk)
πθold(ak|sk)

(5)

LCLIP (θ) =

= Ek [min(pk(θ), clip(pk(θ), 1− ε, 1 + ε))]Ak

(6)

where Ak (Equation 7) is the advantage function at
timestep k, and ε is the hyperparameter defining the clip-
ping range. The entropy loss term S(πθ)sk, weighted by
a hyperparameter w, is added to Eq. 6 to promote agent
exploration, and encourages the actor to try a variety of
different actions, without becoming too greedy towards
the ones it thinks are best. Finally, the advantage func-
tion (Eq. 7) measures how advantageous taking an action
a at timestep k is, with respect to simply running the cur-
rent policy πθ. The critic’s job is to approximate the value
function V (sk), which represents the cumulative sum of
discounted rewards if only the current policy were to be
run until the end of the episode.

A(sk, ak) =

 T∑
j=k

γj−kR(ak, sk)

− V (sk) (7)

3.2. GNC Implementation and Environment

This work presents a novel Artificial Intelligence (AI)-
based autonomous guidance law for a 7-DoF redundant
manipulator mounted on a Space Robot (SR), used to
achieve simultaneous end-effector positioning and atti-
tude alignment with respect to a desired state, as well as
its tracking. As defined in [15], the environment in the
DRL framework corresponds to everything outside of the
agent’s control, hence everything outside of the manip-
ulator’s guidance system is taken as part of the environ-
ment, including the remainder of the SR and the target.
The SR’s control system is implemented through a cou-

Figure 3. GNC architecture of SR

pled, nonlinear model-based feedback linearization con-
troller, where the resulting system is controlled through

two Proportional-Derivative (PD) regulators, respectively
for the base and manipulator. The base is kept at the de-
sired synchronized state with respect to the target, while
the manipulator is commanded by the DRL agent. The
coupled control law is provided in Eq. 8, but being part of
the DRL environment, it could be substituted with a more
performant control approach with little to no retraining.

τ =

{
τ0
τm

}
= H

{
PD(q∗

0 − q0)
PD(q∗

m − qm)

}
+Cq̇ (8)

where H and C are respectively the system’s 13×13
GIM and CIM [11], and q = [q0, qm]⊤ collects the 6-
DoFs of the base and the 7-DoFs of the manipulator. The
scalar gains of the two PDs are set in Eqs. 9 and 10.

KP,0 = 0.4 KD,0 = 0.3 (9)
KP,m = 2.5 KD,m = 1.25 (10)

3.3. Action Space and Observation Space

The agent’s policy, which represents the actor of the PPO
implementation and provides autonomous guidance of
the manipulator, receives 32 observations o (Eq. 11), and
outputs 7 actions a (Eq. 12).

o = [qm, q̇m, r̃, ˜DCM , ṽ, ω̃]⊤ (11)

The terms in Eq. 11 correspond to the current joint an-
gles and joint rates of the manipulator, and the errors be-
tween the current and desired end-effector state, retrieved
through kinematics, and rotated in the SR’s body frame.
This vector is normalized before providing it to the guid-
ance for better convergence of PPO [16]. The main ben-
efit of using the agent only to provide manipulator guid-
ance, is that kinematic information is sufficient in the ob-
servations, which decreases the complexity of the policy
and eases convergence of the algorithm.

a = q̇∗
m = [ϕ̇1, ϕ̇2, ϕ̇3, ϕ̇4, ϕ̇5, ϕ̇6, ϕ̇7]

⊤ (12)

The 7 actions produced by the agent correspond to the
desired joint rates of the manipulator, and are integrated
(Figure 3) such that both the desired joint angles and rates
can be provided to the manipulator’s PD controller [7].

3.4. Reward

Providing the agent with rewards and penalties is the sole
mechanism that incentivizes the manipulator’s guidance
system to increase its performance. Adequate reward
function design is critical as it directly impacts the con-
vergence of the policy towards the optimal one, as well
as the overall attainable performance. Since training on
a sparse reward with high-dimensional state and action
spaces is extremely difficult, reward shaping has been in-
troduced through the definition of an Artificial Potential
Field (APF) (Eq. 13), expanding upon [8].

Uk = −r̃ +
10

1 + r̃ax
+

10

1 + r̃tx
+

10

1 + θ̃
(13)

where r̃ is the magnitude of the error between the desired
and current positions of the end-effector, r̃ax and r̃tx are
the projections of r̃ parallel and transverse to the X-axis
of the SR’s body frame (Figure 2), and θ̃ is the scalar er-
ror angle between the desired and current attitude of the
end-effector, in axis-angle representation. The reward is
given as a function of the end-effector’s potential varia-
tion (∆U) between timesteps (Eq. 14 and 15).

∆U = Uk − Uk−1 (14)

Rk =

{
∆U if ∆U ≥ 0

1.5 ∆U if ∆U < 0
(15)

where the 1.5× multiplier discourages the end-effector
from moving along equipotential surfaces. A bonus
sparse reward of +0.01 is provided while r̃ax, r̃tx, and
θ̃ are simultaneously below a desired threshold.

4. TRAINING AND RESULTS

Before proceeding with training, the initial conditions
and the DRL hyperparameters are introduced. The sce-
nario is that of a target spacecraft tumbling around its
major inertia axis. The SR’s state is kept synchronized
with that of the target, such that they spin together and
any relative motion between the desired end-effector state
and the SR is minimized. The SR is positioned along the
angular momentum (LT) of the target at a nominal dis-
tance of 5 m, and its angular velocity is set as in Eq. 16
for synchronization purposes.

ω0 = [ωT · L̂T , 0, 0]
⊤ (16)

The nominal initial manipulator state is found in Eq. 17.

qm = [0, 285, 0, 210, 0, 75, 0]⊤ deg q̇m = 0 (17)

To increase the robustness of the agent, and to show that
it can adapt to conditions that haven’t strictly been trained
on, the nominal initial conditions of the target object and
of the SR are randomized at the start of each simulation:

• Target’s major-axis spin rate ωT ∈ [−3, 3] deg/s.
• Initial manipulator joint angles are separately per-

turbed by a random value δϕi ∈ [−15, 15] deg.
• Desired end-effector state is randomized on the

whole SR-facing side of the target, both in terms of
position and attitude.

• Magnitude of distance between SR and target is per-
turbed by a random value δd ∈ [−25, 25] cm.

Simulations are only terminated if the manipulator’s con-
figuration becomes singular, to prevent the DRL algo-
rithm from breaking down due to mathematical issues.
With regards to the PPO hyperparameters, the sample
time of the agent is set to 0.3 s as a trade-off between
computational expense, convergence, and reactivity of

Table 1. Actor & Critic Networks.

Layers Actor neurons Critic neurons
Input 32 32

1st hidden 300 300
2nd hidden 300 300
3rd hidden 300 300

Output 14 1
Learning Rate 1e-5 1e-5

Activation tanh tanh

the SR. The actor and critic are represented through two
Feedforward Neural Networks (FNNs), with hyperpa-
rameters in Table 1. A stochastic policy is used to in-
crease agent exploration [18], hence the actor’s 14 out-
puts (Table 1) represent respectively the mean and stan-
dard deviation of each desired joint velocity. The remain-
der of the PPO hyperparameters are selected among typi-
cal values: the clipping factor ε = 0.2, the discount factor
γ = 0.99, the entropy loss weight w = 0.01, the mini-
batch size is 128, and the training epochs are 4. The agent
is trained for 7500 episodes, each of 420 s duration, for
a total of 10.5 M timesteps (Figure 4). Apart from the

Figure 4. Average training episode reward.

initial episodes where the agent uses network parameters
that have only just been initialized, the average reward
grows over time until it converges around a final value.

4.1. Agent performance

The agent’s success in a simulation is defined as its ability
to keep the end-effector within a selected tolerance from
the desired state, in terms of both position and orienta-
tion, consecutively for at least tmin = 30 s. This differs
with respect to what is currently done in the majority of
literature, where, once the end-effector enters the selected
threshold for the first time, the episode is considered suc-
cessful and the simulation is terminated. In such a highly
dynamic scenario, the latter approach does not prove that

the end-effector’s state can remain synchronized with that
of the grasping position, and would artificially increase
the agent’s performance in the environment.
The minimum error thresholds that guarantee a 100%
success rate of the agent, and that represent its perfor-
mance baseline, are r̃ax, r̃tx < 5 cm and θ̃ < 5 deg.
These results are confirmed through the Montecarlo anal-
ysis in Figures 5 and 6, which show that regardless of
the grasping point’s location in the target’s body frame,
the agent can successfully synchronize the manipulator’s
end-effector with the desired state, for consecutive peri-
ods that are much higher than tmin.
Through a deeper analysis of Figure 6, the average time

Figure 5. Grasping location and success correlation.

Figure 6. Monte Carlo analysis over 500 episodes.

that the end-effector takes to successfully converge to the
desired state is found to be 103 s, and in any case, no
episodes take longer than 219 s to accomplish the objec-

tive, which is approximately half of the complete episode
duration. These values are driven by the randomized
initial configuration between manipulator and grasping
point, and increase proportionally to the range of motion
that needs to be carried out by the robotic arm. Addition-
ally, the average consecutive time that the end-effector
stays within the selected error tolerances is 312 s, corre-
sponding to 74% of the total episode duration. This con-
firms that once the end-effector converges to the desired
state, it does not manifest a largely oscillatory behavior.
Building on the few studies found in the literature, this
work demonstrates that the proposed AI based robotic
arm guidance strategy, when applied to a 7-DoF redun-
dant manipulator which has a randomized positioning
and attitude alignment goal for extended periods of time,
reliably provides performance in the order of centimeters
and degrees. These results show an improvement of what
is currently found in literature: in [17] the guidance of a
7-DoF manipulator is trained to achieve an end-effector
positioning goal, whereas its attitude is neglected; in [8],
a 7-DoF manipulator is trained to accomplish both a po-
sitioning and attitude alignment objective, but only the
first 6 of 7 joints are controlled, since the end-effector is
symmetrical around the last joint’s rotation axis.

4.2. Agent robustness

The need for highly reactive , adaptive, and autonomous
systems anticipated for future close-proximity opera-
tions, has been one of the driving factors towards the
introduction of AI based methods into spacecraft GNC.
Despite being new, the recent applications of DRL in
the space field have emerged as promising strategies to-
wards the generation of highly adaptive agents, that can
handle unforeseen conditions that have not strictly been
trained on, with significant increases towards mission ro-
bustness. These capabilities have been shown to be intrin-
sic to the use of deep neural networks, and if achieved,
would provide many benefits supporting the addition of
AI into classic GNC systems. To give some preliminary
insight into why using such approaches could be advan-
tageous, the agent’s limits and generalization capabilities
are stressed in two scenarios that it has not been trained
to handle.
To this extent, errors in the spin rate synchronization
around the target’s rotation axis are added, to see whether
the agent can adapt to this new scenario without further
training. The difference with the previous case, in which
the grasping point is static with respect to the SR, is that
the end-effector now needs to track a moving point and
synchronize its motion with it, maintaining a constant at-
titude. The maximum spin rate error between the base
of the SR and the target is taken from the COMRADE
study [3], where the requirement for the angular rate con-
trol error is set to ||ω0 − ωT || < 0.5 deg/s. Hence, the
SR’s angular velocity is perturbed each episode by a ran-
dom value ωerr ∈ [−0.5, 0.5] deg/s, as in Eq. 18. An
overview of this new scenario is provided in Figure 7.

ω0 = [ωT · L̂T + ωerr, 0, 0]
⊤ (18)

Figure 7. Trajectory of desired end-effector position.

A Monte Carlo analysis is conducted to evaluate the
agent’s performance over 500 testing episodes. In these
conditions that the agent has never experienced during
training, the success rate, defined in the same way as in
the previous section, drops to 94%. These results show
that despite a small decrease in performance, the agent
is robust to errors in the attitude synchronization, and is
capable of tracking a moving position in time. Referring
to Figure 8, it can be seen that the episode failures do not
show a correlation to ωerr, since many episodes are suc-
cessful even when the synchronization error between the
SR and target is high in magnitude. Instead, the failures
of the agent are more so tied to the initial configuration
between the manipulator and grasping point, and are lo-
cated primarily in the third quadrant.

Figure 8. Synchronization error correlation to success.

For a more thorough comparison of the agent’s behav-
ior with and without errors in the SR’s base attitude syn-
chronization, the distribution of two performance indi-
cators is reported in Figures 9 and 10: the first figure

shows how the time of the end-effector’s first success-
ful entry in the thresholds is distributed among episodes,
whereas the second figure shows the distribution of the
maximum consecutive time that the end-effector remains
inside of the threshold, in each episode. Overall, even
when the agent is subjected to a new environment that
has not been trained on, its behavior is quite similar to the
one it demonstrates in nominal conditions. The main dif-
ference is found in terms of outliers in the distributions,
which recur more often when synchronization errors are
present. Despite this similarity in results, better and more
robust performance could be obtained by directly train-
ing the agent to handle the more complex environment,
where possible.

Figure 9. First end-effector entry in threshold.

Figure 10. End-effector consecutive time in threshold.

To better understand how and why the episodes are fail-
ing, a sensitivity analysis on the definition of episode suc-
cess is carried out. The end-effector’s error thresholds
r̃ax, r̃tx < 5 cm and θ̃ < 5 deg, that need to be guar-
anteed consecutively for at least tmin = 30 s, have been
selected arbitrarily and in real scenarios would be heav-
ily mission-dependent. Figure 11 shows the variation of
the success rate over 500 episodes, when these values are
changed, in two distinct cases.

1. The curves associated to the left axis show how the
success rate varies in function of the thresholds on
r̃ax, r̃tx, and tmin, while keeping the one on θ̃ fixed.

2. The curves associated to the right axis show how the
success rate varies in function of the thresholds on
θ̃ and tmin, while keeping the ones on r̃ax and r̃tx
fixed.

From Figure 11, it can be seen that in both analyses,
varying tmin has negligible effects on the success rate,
which is explained by the fact that in the majority of
cases, the agent can keep the end-effector’s errors low for
consecutive periods much longer than tmin. By increas-
ing the threshold on θ̃ from its baseline value of 5 deg,
the success rate remains unchanged, signifying that the
end-effector’s attitude is not the main factor limiting per-
formance. Differently, by increasing the end-effector’s
positioning thresholds, the success rate starts to increase,
making this value act as the main bottleneck in the ob-
tained performance. These results are determined by a

80% 85% 90% 95% 100%

4

5

6

7

8

4

5

6

7

8

Figure 11. Success sensitivity to thresholds.

combination of different effects: firstly, the simple PD
controller that is used to control the system after feed-
back linearization cannot guarantee null steady-state er-
rors, which is a first factor impacting the convergence
of the end-effector towards its final desired state; sec-
ondly, the agent’s sample time of 0.3 s, coupled with the
integration of the actor’s outputs, may also be reducing
the agent’s maximum performance, especially once the
end-effector errors have been reduced below the baseline
threshold values.
A final test is conducted to further stress the agent’s gen-

eralization capabilities, when applied to a Target that is
larger than the one used during training. Specifically, the
agent has been trained to correctly position and align the
end-effector in front of a Target of 50 cm radius, and is in-
stead asked to complete the same randomized objective,
but on a Target of 150 cm radius. The agent’s perfor-
mance is evaluated over 500 testing episodes, and its suc-
cess rate is shown in Figure 12. The results show that as
the goal position of the end-effector moves outside of the
area where it has been trained, the performance drops sig-
nificantly. Despite this, it has been found that no episodes
fail below a radius of 64.5 cm, which shows that the agent
can adapt to a condition that it has not experienced dur-
ing training, and achieve the objective on a Target that
is at most 28% larger than the one used in training. To
confirm these results in a statistical sense, 200 additional
testing episodes are conducted, randomizing the goal po-
sition within a radius of 64.5 cm from the center of the
Target, and the success rate of the agent remains at 100%.

Figure 12. Generalization to larger target.

5. CONCLUSIONS

This work proposes a novel autonomous guidance algo-
rithm for the manipulator of a free-flying space robot,
allowing to automatically synchronize the end-effector
with a desired state fixed to the uncooperative target
spacecraft, in a hypothetical IOS mission. The prob-
lem is formulated as a Partially Observable Markov De-
cision Process (POMDP), and solved through the state-
of-the-art PPO algorithm. A FNN provides the guidance
of the manipulator in real-time based on values retrieved
through the navigation system, which is not implemented,
and its outputs are provided to a model-based feedback
linearization controller, which couples the control laws
of the base of the servicer and its manipulator. After
the training process, the agent successfully reaches a ran-
domized end-effector state objective, in a highly random-
ized environment, with a 100% success rate, keeping its
errors in terms of position and attitude below thresholds
of 5 cm and 5 deg for lengthy consecutive periods. With-
out any further training, the same agent is found to be
robust to errors in the attitude synchronization between
SR and target, and can also complete the same objective
on a target that is at most 28% larger than the one used
during training. Future extensions of similar approaches
could obtain better results by using more performant con-
trol systems, that guarantee null steady-state errors, or by
decreasing the sample time of the agent. The latter would
have to be tuned based on the frequency of the values pro-
vided by the navigation filters.
Despite the literature on this topic being new and with
many shortcomings, the results produced in this work
convey that DRL should be investigated further, as a
prospective solution to a wider set of robotic IOS sce-
narios.

REFERENCES

[1] Brandonisio, A., Capra, L., & Lavagna, M. 2023,
Advances in Space Research

[2] Capra, L., Brandonisio, A., & Lavagna, M. 2023,
Advances in Space Research, 71

[3] Colmenarejo, P., Branco, J., Santos, N., et al. 2018,
69th International Astronautical Congress (IAC), 1

[4] Gaudet, B. & Furfaro, R. 2023, arXiv:2109.03880
[5] Gaudet, B., Linares, R., & Furfaro, R. 2020, Ad-

vances in Space Research, 65, 1723
[6] Gaudet, B., Linares, R., & Furfaro, R. 2020, Acta

Astronautica, 171, 1
[7] Kumar, V., Hoeller, D., Sundaralingam, B., Trem-

blay, J., & Birchfield, S. 2020, arXiv:2011.06332
[8] Li, Y., Li, D., Zhu, W., et al. 2022, Aerospace, 9
[9] Mnih, V., Badia, A. P., Mirza, M., et al. 2016,

arXiv:1602.01783
[10] Papadopoulos, E., Aghili, F., Ma, O., & Lampar-

iello, R. 2021, Frontiers in Robotics and AI, 8
[11] Romano, M., Virgili-Llop, J., & Ii, J. V. D. 2016, 6th

International Conference on Astrodynamics Tools
and Techniques

[12] Schulman, J., Levine, S., Moritz, P., Jordan, M. I.,
& Abbeel, P. 2015, arXiv:1502.05477, 1889

[13] Schulman, J., Wolski, F., Dhariwal, P., Radford, A.,
& Klimov, O. 2017, arXiv:1707.06347

[14] Singh, B., Kumar, R., & Singh, V. P. 2022, Artificial
Intelligence Review, 55, 945

[15] Sutton, R. S. & Barto, A. G. 2018, Reinforcement
learning: An Introduction (Westchester Publishing
Services), 526

[16] Wang, S., Zheng, X., Cao, Y., & Zhang, T.
2021, IEEE International Conference on Intelligent
Robots and Systems, 3724

[17] Wu, Y. H., Yu, Z. C., Li, C. Y., et al. 2020,
Aerospace Science and Technology, 98

[18] Yan, C., Zhang, Q., Liu, Z., Wang, X., & Liang, B.
2018, IEEE International Conference on Robotics
and Biomimetics

